Studying for the A+, Network+ or Security+ exams? Get over 2,600 pages of FREE study guides at CertiGuide.com!
Join the PC homebuilding revolution! Read the all-new, FREE 200-page online guide: How to Build Your Own PC!
NOTE: Using robot software to mass-download the site degrades the server and is prohibited. See here for more.
Find The PC Guide helpful? Please consider a donation to The PC Guide Tip Jar. Visa/MC/Paypal accepted.
Take a virtual vacation any time at DesktopScenes.com - view my art photos online for FREE in either Flash or HTML!

[ The PC Guide | Systems and Components Reference Guide | Motherboard and System Devices | System Buses | System Bus Types ]

Accelerated Graphics Port (AGP)

The need for increased bandwidth between the main processor and the video subsystem originally lead to the development of the local I/O bus on the PCs, starting with the VESA local bus and eventually leading to the popular PCI bus. This trend continues, with the need for video bandwidth now starting to push up against the limits of even the PCI bus.

Much as was the case with the ISA bus before it, traffic on the PCI bus is starting to become heavy on high-end PCs, with video, hard disk and peripheral data all competing for the same I/O bandwidth. To combat the eventual saturation of the PCI bus with video information, a new interface has been pioneered by Intel, designed specifically for the video subsystem. It is called the Accelerated Graphics Port or AGP.

AGP was developed in response to the trend towards greater and greater performance requirements for video. As software evolves and computer use continues into previously unexplored areas such as 3D acceleration and full-motion video playback, both the processor and the video chipset need to process more and more information. The PCI bus is reaching its performance limits in these applications, especially with hard disks and other peripherals also in there fighting for the same bandwidth.

Another issue has been the increasing demands for video memory. As 3D computing becomes more mainstream, much larger amounts of memory become required, not just for the screen image but also for doing the 3D calculations. This traditionally has meant putting more memory on the video card for doing this work. There are two problems with this:

  • Cost: Video card memory is very expensive compared to regular system RAM.
  • Limited Size: The amount of memory on the video card is limited: if you decide to put 6 MB on the card and you need 4 MB for the frame buffer, you have 2 MB left over for processing work and that's it (unless you do a hardware upgrade). It's not easy to expand this memory, and you can't use it for anything else if you don't need it for video processing.

AGP gets around these problems by allowing the video processor to access the main system memory for doing its calculations. This is more efficient because this memory can be shared dynamically between the system processor and the video processor, depending on the needs of the system.

The idea behind AGP is simple: create a faster, dedicated interface between the video chipset and the system processor. The interface is only between these two devices; this has three major advantages: it makes it easier to implement the port, makes it easier to increase AGP in speed, and makes it possible to put enhancements into the design that are specific to video.

AGP is considered a port, and not a bus, because it only involves two devices (the processor and video card) and is not expandable. One of the great advantages of AGP is that it isolates the video subsystem from the rest of the PC so there isn't nearly as much contention over I/O bandwidth as there is with PCI. With the video card removed from the PCI bus, other PCI devices will also benefit from improved bandwidth.

AGP is a new technology and was just introduced to the market in the third quarter of 1997. The first support for this new technology will be from Intel's 440LX Pentium II chipset. More information on AGP will be forthcoming as it becomes more mainstream and is seen more in the general computing market. Interestingly, one of Intel's goals with AGP was supposed to be to make high-end video more affordable without requiring sophisticated 3D video cards. If this is the case, it really makes me wonder why they are only making AGP available for their high-end, very expensive Pentium II processor line. :^) Originally, AGP was rumored to be a feature on the 430TX Pentium socket 7 chipset, but it did not materialize. Via and other companies are carrying the flag for future socket 7 chipset development now that Intel has dropped it, and several non-Intel AGP-capable chipsets will be entering the market in 1998.

The sections below discuss various aspects of AGP, including its features and performance issues. For still more information, check out Intel's AGP page.

Next: AGP Interface


Home  -  Search  -  Topics  -  Up

The PC Guide (http://www.PCGuide.com)
Site Version: 2.2.0 - Version Date: April 17, 2001
Copyright 1997-2004 Charles M. Kozierok. All Rights Reserved.

Not responsible for any loss resulting from the use of this site.
Please read the Site Guide before using this material.
Custom Search